3.5.8 \(\int \frac {1}{\sqrt {\frac {a+b x^4}{x^2}}} \, dx\) [408]

Optimal. Leaf size=32 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {\frac {a}{x^2}+b x^2}}\right )}{2 \sqrt {b}} \]

[Out]

1/2*arctanh(x*b^(1/2)/(a/x^2+b*x^2)^(1/2))/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2004, 2033, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {\frac {a}{x^2}+b x^2}}\right )}{2 \sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[(a + b*x^4)/x^2],x]

[Out]

ArcTanh[(Sqrt[b]*x)/Sqrt[a/x^2 + b*x^2]]/(2*Sqrt[b])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2004

Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && GeneralizedBinomialQ[u, x] &&  !Gene
ralizedBinomialMatchQ[u, x]

Rule 2033

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\frac {a+b x^4}{x^2}}} \, dx &=\int \frac {1}{\sqrt {\frac {a}{x^2}+b x^2}} \, dx\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {\frac {a}{x^2}+b x^2}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {\frac {a}{x^2}+b x^2}}\right )}{2 \sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 59, normalized size = 1.84 \begin {gather*} \frac {\sqrt {a+b x^4} \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {b} x^2}\right )}{2 \sqrt {b} x \sqrt {\frac {a+b x^4}{x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[(a + b*x^4)/x^2],x]

[Out]

(Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/(Sqrt[b]*x^2)])/(2*Sqrt[b]*x*Sqrt[(a + b*x^4)/x^2])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 49, normalized size = 1.53

method result size
default \(\frac {\sqrt {b \,x^{4}+a}\, \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2 \sqrt {\frac {b \,x^{4}+a}{x^{2}}}\, x \sqrt {b}}\) \(49\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*x^4+a)/x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/((b*x^4+a)/x^2)^(1/2)/x*(b*x^4+a)^(1/2)*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))/b^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((b*x^4+a)/x^2)^(1/2),x, algorithm="maxima")

[Out]

b*integrate(x^5/(b*x^4 + a)^(3/2), x) + 1/2*x^2/sqrt(b*x^4 + a)

________________________________________________________________________________________

Fricas [A]
time = 1.68, size = 80, normalized size = 2.50 \begin {gather*} \left [\frac {\log \left (-2 \, b x^{4} - 2 \, \sqrt {b} x^{3} \sqrt {\frac {b x^{4} + a}{x^{2}}} - a\right )}{4 \, \sqrt {b}}, -\frac {\sqrt {-b} \arctan \left (\frac {\sqrt {-b} x^{3} \sqrt {\frac {b x^{4} + a}{x^{2}}}}{b x^{4} + a}\right )}{2 \, b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((b*x^4+a)/x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(-2*b*x^4 - 2*sqrt(b)*x^3*sqrt((b*x^4 + a)/x^2) - a)/sqrt(b), -1/2*sqrt(-b)*arctan(sqrt(-b)*x^3*sqrt((
b*x^4 + a)/x^2)/(b*x^4 + a))/b]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\frac {a + b x^{4}}{x^{2}}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((b*x**4+a)/x**2)**(1/2),x)

[Out]

Integral(1/sqrt((a + b*x**4)/x**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.54, size = 40, normalized size = 1.25 \begin {gather*} \frac {\log \left ({\left | a \right |}\right ) \mathrm {sgn}\left (x\right )}{4 \, \sqrt {b}} - \frac {\log \left ({\left | -\sqrt {b} x^{2} + \sqrt {b x^{4} + a} \right |}\right )}{2 \, \sqrt {b} \mathrm {sgn}\left (x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((b*x^4+a)/x^2)^(1/2),x, algorithm="giac")

[Out]

1/4*log(abs(a))*sgn(x)/sqrt(b) - 1/2*log(abs(-sqrt(b)*x^2 + sqrt(b*x^4 + a)))/(sqrt(b)*sgn(x))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {1}{\sqrt {\frac {b\,x^4+a}{x^2}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^4)/x^2)^(1/2),x)

[Out]

int(1/((a + b*x^4)/x^2)^(1/2), x)

________________________________________________________________________________________